Jawabanpaling sesuai dengan pertanyaan Bagaimana cara menentukan panjang diagonal bidang dan diagonal ruang pada balok?
Rumus Balok Diagonal Ruang, Diagonal Bidang, dan Bidang Diagonal – Bangun ruang dalam ilmu Matematika secara umum memang dapat dibagi menjadi beberapa jenis. Misalnya saja bangun balok. Bangun balok ini sering kali dikaitkan dengan bangun kubus. Kedua bangun tersebut sering kali disamakan satu sama lain. Namun pada kenyataannya kubus dan balok berbeda. Apakah anda tahu apa saja perbedaan kubus dan balok itu? Kubus mempunyai simetri putar sedangkan balok tidak mempunyai simetri putar. Kubus memiliki sisi berbentuk persegi sedangkan balok memiliki sisi berbentuk persegi panjang. Kemudian semua sisi kubus memiliki besar yang sama sedangkan balok hanya memiliki kedua sisi yang besarnya sama. Kubus memiliki volume yang dapat ditentukan dengan rumus s x s x s, sedangkan balok memiliki volume yang dapat dicari dengan rumus p x l x t. Lantas apa yang dimaksud balok itu? Balok adalah bangun ruang yang berasal dari tiga pasang persegi panjang atau persegi dengan ukuran paling tidak satu pasang diantaranya yang berbeda. Balok tersebut berasal dari enam persegi panjang yang sebangun dan sama panjang. Seperti halnya kubus, bangun balok juga memiliki beberapa unsur di dalamnya. Unsur unsur balok ini dapat berupa diagonal bidang, diagonal ruang dan bidang diagonal. Apa yang dimaksud diagonal bidang balok? Apa itu diagonal ruang balok? Apa pengertian bidang diagonal balok itu? Bagaimana rumus ketiga unsur balok tersebut? Pada kesempatan kali ini saya akan menjelaskan tentang rumus diagonal bidang balok, rumus diagonal ruang balok, dan rumus bidang diagonal balok. Untuk lebih jelasnya dapat anda simak di bawah ini. Contents 1 Rumus Balok Diagonal Ruang, Diagonal Bidang, dan Bidang Diagonal Bidang Contoh Soal Diagonal Bidang Diagonal Ruang Contoh Soal Diagonal Ruang Bidang Diagonal Contoh Soal Bidang Diagonal Balok Seperti yang telah saya jelaskan di atas bahwa kubus dan balok itu berbeda. Namun selain perbedaan kubus dan balok ini, ternyata masih ada beberapa persamaan diantara kedua bangun ini. Apa persamaan kubus dan balok itu? Persamaan balok dan kubus pada dasarnya terletak pada pasangan sisi sejajar, pasangan rusuk sejajar dan titik sudutnnya. Lantas apakah anda tahu contoh benda berbentuk balok itu? Benda benda berbentuk balok secara umum dapat kita jumpai dalam kehidupan sehari hari yaitu pembungkus sabun mandi, penghapus, batu bata, kotak makan dan sebagainya. Dalam bangun balok tersebut dapat kita ketahui beberapa istilah seperti diagonal sisi atau diagonal bidang, diagonal ruang dan bidang diagonal. Apa yang dimaksud diagonal bidang itu? Apa itu diagonal ruang? Apa pengertian bidang diagonal? Agar anda lebih paham mengenai materi tersebut saya akan membahas tentang rumus diagonal bidang balok, rumus diagonal ruang balok dan rumus bidang diagonal balok. Berikut penjelasan selengkapnya Diagonal Bidang Balok Pengertian diagonal bidang balok adalah ruas garis yang digunakan sebagai penghubung dua titik pada setiap sisi atau bidang balok yang saling berhadapan. Untuk lebih jelasnya perhatikan bidang sisi TUVW pada bangun balok di bawah ini Berdasarkan gambar di atas dapat kita ketahui titik sudut U dan W serta titik sudut T dan V dihubungkan oleh ruas garis tertentu yang dinamakan dengan diagonal sisi atau diagonal bidang. Maka dari itu bidang sisi TUVW mempunyai dua diagonal bidang yaitu UW dan TV. Jadi bangun balok memiliki dua diagonal bidang disetiap bidangnya. Balok tersebut mempunyai 6 sisi sehingga diagonal sisi/bidangnya berjumlah 12 buah. Lantas bagaimana rumus diagonal bidang balok itu? Cara menentukan diagonal bidang balok dapat dilakukan dengan konsep teorema phytagoras. Untuk lebih jelasnya perhatikan gambar berikut Cara Menentukan Diagonal Bidang Balok Berdasarkan gambar balok di atas, kita dapat melihat bahwa balok mempunyai panjang p, lebar l dan tinggi t. Maka dari itu kita dapat menghitung panjang TV pada segitiga TUV yang siku sikunya ada di U dengan konsep teorema phytagoras. Maka hasilnya akan menjadiTV = √TU² + UV²TV = √p² + l² Agar anda lebih paham mengenai pengertian diagonal bidang balok dan rumus diagonal bidang balok di atas. Saya akan membagikan contoh soal terkait rumus tersebut. Adapun contoh soal diagonal bidang balok yaitu sebagai berikut Contoh Soal Diagonal Bidang Balok Perhatikan gambar balok di bawah ini! Tentukana Panjang AFb Panjang ACc Panjang AH soal diagonal bidang balok tersebut dapat diselesaikan dengan cara seperti di bawah ini a Langkah pertama menentukan panjang AF pada segitiga ABF yang siku sikunya di B dengan cara seperti di bawah iniAF = √AB² + BF²AF = √12² +9²AF = √144 + 81AF = √225AF = 15 cm b Kemudian panjang AC pada segitiga ABC yang siku sikunya ada di B dapat ditentukan dengan cara berikutAC = √AB² + BC²AC = √12² +6²AC = √144 + 36AC = √180AC = 6√5 cm c Selanjutnya panjang AH pada segitiga AEH yang siku sikunya ada di E dapat dicari dengan rumus berikutAH = √AE² + EH²AH = √9² +6²AH = √81 + 36AH = √117AH = 3√13 cm Diagonal Ruang Balok Setelah menjelaskan tentang pengertian diagonal bidang balok dan rumus diagonal bidang balok di atas. Selanjutnya saya akan membahas tentang pengertian diagonal ruang balok dan rumus diagonal ruang balok. Diagonal ruang balok adalah ruas garis yang digunakan sebagai penghubung dua titik sudut dalam ruang balok yang saling berhadapan. Perhatikan gambar di bawah ini Diagonal Ruang Balok Berdasarkan gambar di atas terdapat titik P dan V, titik R dan T, titik Q dan W serta titik S dan U yang saling dihubungkan. Garis QW, garis SU, garis PV dan garis RT dapat dinamakan dengan diagonal ruang, dimana saling berpotongan pada satu titik. Diagonal ruang yang dimiliki bangun balok berjumlah empat buah yang berpotongan di satu titik dan panjangnya sama. Lantas bagaimana rumus diagonal ruang balok itu? Cara menghitung diagonal ruang balok dapat dilakukan dengan konsep teorema phytagoras. Adapun gambar selengkapnya yaitu Berdasarkan gambar balok di atas, kita dapat melihat bahwa balok mempunyai panjang p, lebar l dan tinggi t. Maka dari itu kita dapat menghitung panjang AG dengan konsep teorema phytagoras. Tetapi kita harus mencari diagonal sisi balok terlebih dahulu yaitu panjang AC pada segitiga ABC siku siku di B. Maka hasilnya akan menjadiAC = √AB² + BC²AC = √p² + l² Setelah itu panjang AG pada segitiga ACG siku siku di G dapat dicari panjangnya dengan metode seperti berikutAG = √AC² + CG²AG = √√p² + l²² + t²AG = √p² + l² + t² Diagonal ruang balok kita buat permisalan dalam bentuk d. Maka rumus diagonal ruang balok secara umum dapat berbentuk seperti di bawah ini d = √p² + l² + t² Agar anda lebih paham mengenai rumus dan pengertian diagonal ruang balok di atas. Saya akan membagikan contoh soal terkait rumus tersebut. Adapun contoh soal diagonal ruang balok yaitu sebagai berikut Contoh Soal Diagonal Ruang Balok Sebenarnya ada berbagai bentuk soal balok yang berisi materi diagonal ruang di buku LKS. Namun beberapa siswa cenderung lebih memilih belajar dari internet karena disertakan kunci jawabannya. Maka dari itu, untuk melengkapi materi yang sudah saya terangkan sebelumnya maka simaklah contoh soal berikut Tentukan diagonal ruang balok yang panjangnya 14 cm, lebar 10 cm dan tinggi 6 cm? = √p² + l² + t²d = √14² + 10² + 6²d = √196 + 100 + 36d = √332d = 2√83 cm Bidang Diagonal Balok Setelah menjelaskan tentang pengertian diagonal bidang balok, rumus diagonal bidang balok, pengertian diagonal ruang balok dan rumus diagonal ruang balok di atas. Selanjutnya saya akan membahas tentang pengertian bidang diagonal balok dan rumus bidang diagonal balok. Diagonal bidang balok adalah bidang pada sebuah balok yang membatasi diagonal bidang dan dua rusuknya. Berikut gambar balok di bawah ini Bidang Diagonal Balok Balok di atas memiliki bidang diagonal yaitu bidang PWVQ dan PRVT. Bentuk diagonal balok tersebut adalah persegi panjang sehingga setiap pasangnya kongruen. Maka dari itu balok memiliki bidang diagonal yang berjumlah enam buah. Bagaimana rumus bidang diagonal balok? Cara menghitung bidang diagonal balok dapat dilakukan dengan rumus luas persegi panjang. Agar anda lebih paham mengenai materi tersebut, maka saya akan membagikan contoh soal bidang diagonal balok terkait rumus tersebut. Adapun contoh soal dan pembahasannya yaitu Contoh Soal Bidang Diagonal Balok Perhatikan gambar berikut! Tentukan bidang diagonal ABGH pada balok di atas? soal bidang diagonal tersebut dapat diselesaikan dengan mencari panjang BG terlebih dahulu. Caranya mudah yaituBG = √BC² + CG²BG = √9² + 12²BG = √81 + 144BG = √225BG = 15 cm Kemudian mencari luas bidang diagonal ABGH dengan rumus persegi panjang seperti di bawah iniLuas ABGH = AB . BGLuas ABGH = 15 cm . 15 cmLuas ABGH = 225 cm² Sekian penjelasan mengenai rumus diagonal bidang balok, rumus diagonal ruang balok, dan rumus bidang diagonal balok. Balok secara umum memang memiliki beberapa unsur di dalamnya seperti diagonal bidang, diagonal ruang dan bidang diagonal. Semoga artikel ini dapat bermanfaat dan terima kasih telah berkunjung di blog ini. Setelahmemperhatikan penjelasan tentang ciri-ciri dan rumus luas permukaan balok, sekarang mari simak contoh soal perhitungan luas permukaan balok. Berikut soalnya: Diketahui sebuah tempat pensil yang berbentuk balok mempunyai panjang 28 cm, lebar 16 cm, dan tinggi 20 cm. Tentukan luas balok tersebut! Diketahui: p = 28 cm. l = 16 cm. t = 20 cm Rumus Balok - Rumus Volume Balok dan Rumus Luas Permukaan Balok A. Pengertian Balok atau Cuboid Balok adalah bangun ruang tiga dimensi yang tersusun oleh 3 pasang segi empat persegi atau persegi panjang dan paling sedikit mempunyai 1 pasangan sisi segi empat yang mempunyai bentuk yang berbeda. Sebelum mempelajari rumus volume balok dan luas permukaan balok, sebaiknya kita memahami sifat-sifat balok, bagian-bagian balok, dan jaring-jaring balok. Artikel terkait Rumus Kubus Volume Kubus dan Luas Permukaan Kubus B. Sifat-Sifat Balok, Bagian Balok, dan Jaring-Jaring Balok Berikut sifat-sifat umum balok Balok tersusun dari 3 pasang sisi yang sama total 6 buah sisi. Setiap sisi berbentuk segiempat yaitu persegi atau persegi panjang. Paling sedikit harus mempunyai 1 pasang sisi dengan bentuk yang berbeda. Mempunyai 12 rusuk. Rusuk-rusuk yang sejajar mempunyai ukuran yang sama. Mempunyai 4 diagonal bidang. Diagonal bidang yang sejajar mempunyai ukuran yang sama. Mempunyai 4 diagonal ruang dan semuanya mempunyai ukuran yang sama. Setiap bidang diagonal berbentuk persegi panjang. C. Rumus Balok t = tinggi, p = panjang, l = lebar Nama Rumus Volume V V = p × l × t Luas Permukaan L L = 2 × + + Panjang p p = V ÷ l ÷ t Lebar l l = V ÷ p ÷ t Tinggi t t = V ÷ p ÷ l Diagonal bidang atau sisi ds Diagonal ruang dr Luas bidang diagonal bd Contoh 1 Menghitung Volume dan Luas Permukaan Balok Hitunglah volume dan luas permukaan balok berikut! Diketahui p = 6 cm l = 3 cm t = 4 cm Ditanya Volume V dan Luas Permukaan L Balok Penyelesaian V = p × l × t V = 6 cm × 3 cm × 4 cm V = 72 cm³ L = 2 × + + L = 2 × 6 cm × 3 cm + 6 cm × 4 cm + 3 cm × 4 cm L = 2 × 18 cm² + 24 cm² + 12² L = 2 × 54 cm² L = 108 cm² Jadi, volume balok adalah 72 cm³ dan luas permukaan balok adalah 108 cm². Contoh 2 Cara Menghitung Panjang Balok Jika Diketahui Luas Permukaannya Sebuah balok mempunyai luas permukaan 52 cm², jika diketahui lebar balok 2 cm dan tinggi balok 3 cm. Hitunglah panjang balok tersebut! Diketahui L = 52 cm² l = 2 cm t = 3 cm Ditanya Panjang balok p Penyelesaian Cara menghitung panjang balok jika diketahui luas permukaannya Jadi, panjang balok adalah 4 cm. Contoh 3 Cara Menghitung Panjang Balok Jika Diketahui Volume Sebuah balok mempunyai volume 12 cm³, jika diketahui lebar balok 2 cm dan tinggi balok 2 cm. Hitunglah panjang balok tersebut! Diketahui V = 12 cm³ l = 2 cm t = 2 cm Ditanya Panjang balok p Penyelesaian p = V ÷ l ÷ t p = 12 cm³ ÷ 2 cm ÷ 2 cm p = 3 cm Jadi, panjang balok adalah 3 cm. Contoh 4 Cara Menghitung Lebar Balok Jika Diketahui Luas Permukaannya Sebuah balok mempunyai luas permukaan 214 cm², jika diketahui panjang balok 7 cm dan tinggi balok 5 cm. Hitunglah lebar balok tersebut! Diketahui L = 214 cm² p = 7 cm t = 5 cm Ditanya Lebar balok l Penyelesaian Jadi, lebar balok adalah 6 cm. Contoh 5 Cara Menghitung Lebar Balok Jika Diketahui Volume Sebuah balok mempunyai volume 336 cm³, jika diketahui panjang balok 8 cm dan tinggi balok 6 cm. Hitunglah lebar balok tersebut! Diketahui V = 336 cm³ p = 8 cm t = 6 cm Ditanya Lebar balok l Penyelesaian l = V ÷ p ÷ t l = 336 cm³ ÷ 8 cm ÷ 6 cm l = 7 cm Jadi, panjang lebar adalah 7 cm. Contoh 6 Cara Menghitung Tinggi Balok Jika Diketahui Luas Permukaannya Sebuah balok mempunyai luas permukaan 382 cm², jika diketahui panjang balok 9 cm dan lebar balok 8 cm. Hitunglah tinggi balok tersebut! Diketahui L = 382 cm² p = 9 cm l = 8 cm Ditanya Tinggi balok l Penyelesaian Jadi, tinggi balok adalah 7 cm. Contoh 7 Cara Menghitung Tinggi Balok Jika Diketahui Volume Sebuah balok mempunyai volume 7120 cm³, jika diketahui panjang balok 10 cm dan lebar balok 8 cm. Hitunglah tinggi balok tersebut! Diketahui V = 720 cm³ p = 10 cm l = 8 cm Ditanya Tinggi balok l Penyelesaian l = V ÷ p ÷ l l = 720 cm³ ÷ 10 cm ÷ 8 cm l = 9 cm Jadi, panjang lebar adalah 9 cm. Contoh 8 Menghitung Diagonal Bidang, Diagonal Ruang, dan Luas Bidang Diagonal Hitunglah panjang diagonal bidang, diagonal ruang, dan luas bidang diagonal balok di bawah! Diketahui p = 4 cm l = 2 cm t = 3 cm Penyelesaian Panjang diagonal bidang Balok mempunyai 12 diagonal bidang dan dibagi menjadi 3 kelompok diagonal bidang Dengan panjang masing-masing, dapat dihitung menggunakan rumus Pythagoras Artikel terkait Rumus Pythagoras Segitiga dan Contoh Soalnya Panjang diagonal ruang Balok mempunyai 4 diagonal ruang yang sama panjang Dengan panjang setiap diagonal ruang Luas bidang diagonal Balok mempunyai 3 pasangan luas bidang diagonal total 6 bidang diagonal Dengan luas setiap bidang diagonal Kontributor Bambs Pemeriksa Animasi Balok Pierce, Rod - Math is Fun Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel “Rumus Volume Balok dan Rumus Luas Permukaan Balok”. Nantikan artikel menarik lainnya dan mohon untuk share dan juga menyukai Fans Page Advernesia. Terima kasih… A Pengertian Balok atau Cuboid Balok adalah bangun ruang tiga dimensi yang tersusun oleh 3 pasang segi empat (persegi atau persegi panjang) dan paling sedikit mempunyai 1 pasangan sisi segi empat yang mempunyai bentuk yang berbeda. Sebelum mempelajari rumus volume balok dan luas permukaan balok, sebaiknya kita memahami sifat-sifat balok, bagian-bagian balok, dan jaring-jaring balok. Artikel []RumusLuas Permukaan Balok (Arsip Zenius) Keterangan: L = luas permukaan () p = panjang (m) l = lebar (m) t = tinggi (m) Sama halnya dengan kubus, rumus luas permukaan balok ini juga sebenarnya kalo kita paham konsep dari bangun ruang balok, kita bisa dengan mudah mengingatnya.